
Journal of Computational Physics 228 (2009) 8367–8379
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
Efficient OðNÞ integration for all-electron electronic structure
calculation using numeric basis functions

V. Havu a,b,*, V. Blum b, P. Havu b, M. Scheffler b

a Department of Applied Physics, Helsinki University of Technology – TKK, Finland
b Fritz Haber Institute of the Max Planck Society, Berlin, Germany

a r t i c l e i n f o a b s t r a c t
Article history:
Received 24 November 2008
Received in revised form 13 July 2009
Accepted 12 August 2009
Available online 21 August 2009

PACS:
02.60.Jh
71.15.Ap
71.15.Dx

Keywords:
Electronic structure theory
Density functional theory
Atom-centered basis functions
Numerical integration grid
Spatial partitioning
0021-9991/$ - see front matter � 2009 Elsevier Inc
doi:10.1016/j.jcp.2009.08.008

* Corresponding author. Address: Helsinki Univer
E-mail address: Ville.Havu@tkk.fi (V. Havu).
We consider the problem of developing OðNÞ scaling grid-based operations needed in many
central operations when performing electronic structure calculations with numeric atom-
centered orbitals as basis functions. We outline the overall formulation of localized algo-
rithms, and specifically the creation of localized grid batches. The choice of the grid parti-
tioning scheme plays an important role in the performance and memory consumption of
the grid-based operations. Three different top-down partitioning methods are investigated,
and compared with formally more rigorous yet much more expensive bottom-up algo-
rithms. We show that a conceptually simple top-down grid partitioning scheme achieves
essentially the same efficiency as the more rigorous bottom-up approaches.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Computational electronic structure theory (EST) (e.g., density functional theory [1], Hartree–Fock, or many-body pertur-
bation theories such as MP2 and GW) is playing an increasingly prominent role in science and technology. Traditionally, a
large variety of discretization methods via basis sets has been available for the Kohn–Sham equations [2], on which many
practical implementations are based. In particular, a successful basis choice employed in a variety of all-electron implemen-
tations [3–8] is numeric atom-centered orbitals (NAOs). These offer an efficient prescription that can be used for accurate
full-potential, all-electron calculations of periodic and non-periodic systems on equal footing.

The present paper examines the real-space, three-dimensional integration grid infrastructure needed to optimally handle
NAO-based all-electron EST. While all algorithms are described and tested with NAOs in mind, we note that the same algo-
rithms and basic observations will also apply to many other all-electron basis set prescriptions for EST. Indeed, similar grid-
based operations are needed in several widely used and actively developed codes (e.g., DMol [5], TURBOMOLE [9], ADF [10],
Gaussian [11], and many others). OðNÞ integration formalisms have also been given in the wider OðNÞ community, e.g., in the
context of the pseudopotential-based Siesta [12], ONETEP [13], OpenMX [14], or Conquest [15] codes.
. All rights reserved.

sity of Technology, Department of Applied Physics, P.O. Box 1100, FI-02015 TKK, Finland.

http://dx.doi.org/10.1016/j.jcp.2009.08.008
mailto:Ville.Havu@tkk.fi
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp


8368 V. Havu et al. / Journal of Computational Physics 228 (2009) 8367–8379
The use of NAOs entails inevitably a real-space grid that is required to perform the basic operations of EST: integration of
the Hamilton matrix, update of the electron density, and solution of the electrostatic potential (we do not specifically address
the latter in this paper). In practice, these grid-based operations are the main cost associated with NAOs for all but the largest
systems ( J 500–1000 atoms). The reason is that the number of NAOs needed to achieve an accurate solution is relatively
low ([50 basis functions/atom for meV/atom total-energy accuracy [5,8]) compared to the number of basis functions re-
quired in other methods. Consequently, even an OðN3Þ solution of the discretized Kohn–Sham eigenvalue problem does
not dominate in all but the largest systems—and even there, the development of OðNÞ methods that circumvent the
Kohn–Sham eigenvalue solution is an active research area, and appropriate implementations (e.g., Refs. [12,14–16]) are
now available for many system classes.

By using explicit confining potentials in their construction [6,7,17–23], NAOs give a natural platform to make the grid-
based operations scale OðNÞ by properly localizing all basis functions. Specifically, the good and eventually nearly linear-scal-
ing performance of NAOs in the integrations and in the update of the electron density results from spatial localization of the
basis functions combined with a careful division of the grid into spatially localized regions for the grid-based operations
[11,15,24,25]. In this paper we (1) reiterate that there is a scheme that via basis and grid localization results in nearly lin-
ear-scaling grid operations for NAOs, (2) study the problem of partitioning the grid into localized batches in detail using
three top-down grid partitioning methods, and (3) show that a formally more rigorous class of bottom-up grid partitioning
methods is too expensive for our purposes. Finally, we compare the computational efficiency of these methods for different
prototypical applications (polyalanine chains, Cu clusters, Au surfaces and fcc Al bulk).

Before moving on to the detailed description and analysis of our approach, we show what properly implemented [8] basis
and grid localization schemes should achieve in terms of scaling, in the case of NAOs. Fig. 1 shows the computational scaling
for a series of real molecules, specifically a series of fully extended conformations of polyalanine peptide molecules. In
Fig. 1(a), a single alanine aminoacid is shown, identified by its CH3 side group. Fig. 1(b) shows how several alanine units
are linked together into a peptide chain. The conformation shown here is known as ‘‘fully extended.” Because it is essentially
linear, the distance between successive basis function centers in this system class grows rapidly with length. We emphasize
that we here choose this system class specifically because it is well suited to demonstrate the correct scalability limit of our
implementation in principle. Finally, Fig. 1(c) shows the scaling as the polyalanine chain length increases from a single
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Fig. 1. Scalability for fully extended polyalanine molecules with respect to system size. (a) Single alanine aminoacid. (b) Segment of a fully extended
polyalanine chain (five CH3 residues). (c) Timings in seconds for one self-consistency iteration of finite, fully extended polyalanine chains of increasing
length. The scaling exponents of the operations for the four largest systems are: Total: OðN1:5Þ, electron density update using Eq. (6): OðN1:0Þ and using Eq.
(5): OðN1:8Þ solution of the Hartree potential with an atom-wise multipole decomposition: OðN1:5Þ integration of the Hamilton matrix: OðN1:0Þ, ScaLAPACK
based solution of the eigenvalues and eigenvectors OðN2:2Þ.
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Fig. 2. Scalability for fully extended polyalanine of sixty residues (603 atoms) with respect to number of CPU cores. Timings are in seconds for one self-
consistency iteration.

Table 1
Basis and grid settings for all elements as used in the calculations. The basis sizes given are for ionic and hydrogen-like functions in addition to the minimal basis
of occupied atomic orbitals. The notation hnihli for the basis (e.g., 3s) means that for each atom there are hni radial functions that correspond to an angular
momentum denoted by hli, in addition to the minimal basis of atomic valence orbitals. If hni = 1, it is omitted from the notation.

H C N O Cu Au Al

Basis: minimal + 3s2p 2s2p2df 2s2p2df 2s2p2df spdfg spdf spd
rcutoff (Å) 5.5 5.5 5.5 5.5 6.0 6.0 6.0
Min. angular grid 110 110 110 110 50 50 110
Max. angular grid 590 590 590 590 590 590 302
nradial 49 69 71 73 107 147 41
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residue of 18 atoms (the terminations are included in this count) up to a molecule of 60 residues with 603 atoms. Fig. 2
shows the parallel scalability for our approach in the case of the 603 atom fully extended polyalanine chain. We emphasize
that all computational settings reflect tightly converged production settings as detailed in Table 1. It can be seen that the
grid-based operations (update of the electron density using a density matrix and integration of the Hamilton matrix) are
nearly linear scaling and the overall scaling reaches the value OðN1:5Þ for the four largest systems. Since our focus is on those
methodological steps that involves localized basis functions in real-space, the solution of the Hartree potential and the
eigenvalue problem are shown for illustration only, but have not yet been adapted for the same rigorous scaling require-
ments as the (without localization) dominant basis-dependent steps. All our results are computed using the FHI-aims com-
puter code, a recently developed NAO-based implementation for electronic structure calculations [8]. The timings were
obtained on an IBM p575 Power5+ system using 16 CPU cores, except for Figs. 1(c) and 2 that were calculated on a Cray
XT/4, and Fig. 7 that was computed on IBM Power6 575 system with 32 CPU cores.
2. Localization of the basis functions

The general form of a NAO basis function is given by
ui;lm ¼
uiðrÞ

r
Ylmðh;/Þ; ð1Þ
where Ylm is a spherical harmonic and uiðrÞ is a real-valued function representing the radial shape of the atom-centered basis
function. In our actual implementation, we use as angular momentum functions Ylm the real and imaginary parts of the com-
plex spherical harmonics, leading to only real-valued functions ui;lm (the full index set i,lm is condensed to i below). The ra-
dial function, uiðrÞ, is usually taken to be a solution to a Schrödinger equation of atomic, ionic or hydrogenic type, and is
localized using a smooth cutoff potential so that uiðrÞ becomes zero beyond some cutoff radius, rcutoff (see Ref. [8] for details).
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To illustrate the effect of this localization, let us consider the two operations we are focusing on: (1) the integration of the
Hamilton matrix and (2) the update of the electron density.

(1) The Hamilton matrix, h, has the entries hij ¼
R

R3 uiĥuj dr3 where ui and uj are the basis functions. If implemented
without localization, the integration leads to OðN3Þ scaling of the computation, since for each pair of basis functions
we need to run over all the grid. However, this can be avoided by enforcing a localization of the basis functions using a
cutoff potential. As the spatial extent of the considered system grows, the number of non-zero basis functions that
need to be consider for each grid point levels off to a constant value, leaving only the number of grid points as a growth
factor for the complexity of the operation.

(2) The electron density is defined by
1 For
nðrÞ ¼
Xnstates

k¼1

fkjwkðrÞj
2
; ð2Þ
where fk’s are the occupation numbers, and the sum runs over all Kohn–Sham eigenstates, which are given by
wkðrÞ ¼
Xnbasis

i¼1

ck
i uiðrÞ ð3Þ
so that
nðrÞ ¼
Xnocc

k¼1

fk

Xnbasis

i¼1

ck
i uiðrÞ

Xnbasis

j¼1

ck
j

� ��
ujðrÞ ð4Þ

¼
Xnocc

k¼1

fk

Xnbasis

i¼1

Xnbasis

j¼1

ck
i uiðrÞ ck

j

� ��
ujðrÞ ð5Þ

¼
Xnbasis

i¼1

Xnbasis

j¼1

DijuiðrÞujðrÞ: ð6Þ

Here Dij ¼
Pnocc

k¼1fkck
i ðck

j Þ
� is the density matrix. Again, if implemented naively with no regard to localization, Eq. (4)

leads to an OðN3Þ operation count [OðN3Þ for the setup of each occupied Kohn–Sham orbital at each grid point, followed
by a scalar product of Kohn–Sham orbitals at each grid point—the latter is an OðN2Þ operation]. Taking into account
localization, the number of non-zero basis functions at each grid point will eventually level off as for the Hamiltonian
as the system size grows, but nocc will not level off, so that the complexity will be reduced to an OðN2Þ algorithm. After
summing up the density matrix, the actual grid-based density update Eq. (6) will be a linear-scaling operation apart
from the cost of setting up the density matrix, which is an OðN2Þ operation but has only a small prefactor compared
to the grid-based operation in the case of NAOs. For very large systems, the density matrix Dij becomes sparse, and is
usually stored in a sparse storage format. Although we do not presently pursue such an approach, we note that the
sparsity of Dij can also be used directly to bypass the Kohn–Sham orbitals ck

j , leading to OðNÞ scaling by imposing
localization conditions (see Refs. [15,26] and references therein).
Note that the density matrix based density update Eq. (6) will be superior to the orbital based Eq. (4) only when the num-
ber of occupied orbitals becomes larger than the number of basis functions that are locally non-zero. Due to localization
there will be such a turning point as the system size grows. This is also visible in Fig. 1, which shows the cross-over point
(dashed and solid blue1 lines and square symbols) around 300 atoms.
3. Grid operations

To illustrate the role that is played by the grids in NAO-based calculations, we return to the example of computing the
Hamilton matrix. In practice, the integration grid used for evaluating an approximation to hij is composed of overlapping
atom-centered grids, where each radial shell of points is a Lebedev grid [27–29]. The radial positions of the shells on the axis

ranging from zero to infinity are taken to be rs ¼ � log 1� s
nradialþ1

� �2
� �

; s ¼ 1; . . . ;nradial [30]. For other options and extensive

tests on the grids in conjunction with Gaussian basis functions we refer to Ref. [9].
The overlapping grids are then partitioned using a partitioning of unity method [5,31], i.e., each atom-centered grid (cen-

tered at a site a) is associated with a weight function paðrÞ ða ¼ 1; . . . ;NgridsÞ such that
P

apaðrÞ ¼ 1 for every point r 2 R3. On
this grid the exact value of hij is approximated using a quadrature over the discrete integration points {r}, i.e., we set
hij ¼

P
rwðrÞf ðrÞwhere wðrÞ is the combined weight of radial, angular and partition weights at r, f ðrÞ ¼ ðuiĥujÞðrÞ is the inte-

grand and the summation runs over all grid points.
interpretation of color in Figs. 1-7, the reader is referred to the web version of this article.



V. Havu et al. / Journal of Computational Physics 228 (2009) 8367–8379 8371
In practice the quadrature is not done one grid point at a time but larger batches of points, Bm, are used [10]. This allows
the use of matrix–matrix products for computing the matrix elements hij. The full algorithm (closely related to the ones in
[10,11,25,32]) is presented in detail in Algorithm 1. Three observations are imminent at this point. First, for Step 1a to yield
as small number of non-zero basis functions as possible it is important to have grid batches that are as localized as possible.
Second, Step 1a scales technically OðN2Þ (e.g., compute the square of the distance of each atom from each grid point) but has
an extremely small prefactor. In fact, the indices of the non-zero basis functions for each batch can be computed at the ini-
tialization stage for the current atomic configuration and stored thereafter if desired, requiring only one OðN2Þ step for each
atomic configuration. Third, the loop over the batches is an embarrassingly parallel operation. In fact, the only communica-
tion operation is a global reduction that takes place when summing up the results in Step 2.
Algorithm 1. Integration of the Hamilton matrix with given grid batches Bm
(1)
 For each batch of points Bm:

(a) Find the non-zero basis functions in the batch. Denote the number of these by nnzðBmÞ.
(b) For each r 2 Bm and each non-zero basis function ui; i ¼ 1; . . . ;nnzðBmÞ evaluate the matrices Ki;r ¼ wðrÞuiðrÞ

and Lj;r ¼ ðĥujÞðrÞ.
(c) Compute the part of the submatrix of the Hamilton matrix that corresponds to Bm; hij½Bm�, with a matrix–

matrix product over the points in Bm, i.e., hij½Bm� ¼
P

rKi;rLj;r.P

(2)
 After the loop over Bm’s is finished sum up the results: hij ¼ mhij½Bm�.
4. Grid partitions

4.1. General form of the problem

Let us start with the formal definition of the general problem of finding the grid batches that are as localized as possible
for the grid based operations as given in Problem 1:

Problem 1. Given a (finite and non-empty) set of points P � R3, find the batches fBmg; m ¼ 1; . . . ;Nbatches such that

(1) [mBm ¼ P.
(2) Bm \ Bl ¼ ; for m – l.
(3) c0 6 #Bm 6 c1 for some cs;#P P cs P 1. Here #S denotes the number of points in the set S.
(4) The quantity
(a) avgmfnnzðBmÞg or
(b) maxmfnnzðBmÞg

is minimized.

The target 4a aims for optimal performance whereas the target 4b is geared towards minimal workspace memory
consumption.

It should be noted that the general form of Problem 1 is not solvable in practice due to high complexity, and therefore it is
necessary to employ heuristic methods instead of solving the optimization problem directly. However, in the special case
when c0 ¼ 1, the optimal solution can be found and it is given by batches containing only single points. We use this case
as a reference for our algorithms and denote Bref

m ¼ frjr ¼ rðmÞg, the set containing the mth integration point.
We note that the problem setting is closely related to partitioning methods needed in adaptive multilevel methods for

solving parallel differential equations (see, e.g., Ref. [33] and references therein) except that in our case the grid is not evolv-
ing and the global localization of the partitions is not an issue. Another relation can be found to the integration methods dis-
cussed in Ref. [34]. However, our aim is not to partition the space into regions where different cubatures can be applied but
focus on the localization of the integration batches for a given grid and cubature. Finally, the problem of finding good grid
partitions is a generic one for many codes similar to ours. Nonetheless, while the use of grid partitions is mentioned in sev-
eral works (e.g., Refs. [11,24,25,35], in the slightly different context of load balancing in Ref. [36]), to our knowledge only one
work (Ref. [11]) discusses the choice of their shape to minimize the computational work in a comparative way (in that case, a
hybrid of the radial shell and octree methods below).

4.2. Three top-down methods to partition the grid

In this section we present three top-down methods to partition the atom centered real-space grids. The methods are top-
down in the sense that they generate the batches without using information on the structure of the grid within the generated
batch. The resulting algorithms are very efficient and the batching can be done with minimal cost. On the other hand, the local
distribution of the points is not fully accounted for and, e.g., local variations in the density of points are not considered. We will
return to this question in Section 5.3 for our discussion about alternative bottom-up methods for generating the grid batches.
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4.2.1. Radial shells and their partitions
The first method is based on the geometric properties of the overlapping grids and is the most straightforward of the

methods we consider. In this case, the batches are simply taken to be the Lebedev grids making up the radial shells. Further-
more, they can be refined by considering halves, quadrants and octants of the shells, leading to
Bm ¼ fangular grid=subset of the grid for one radial shellg
for m ¼ 1; . . . ;Nbatches.

4.2.2. Octree partitions of the grid
The second method does away with the relation between the grids and the atoms and considers the grid only as a set of

points in R3. Then the grid is recursively partitioned into eight sub-grids by splitting the set of points with planes parallel to
the coordinate axes. The details are given in Algorithm 2 that uses a depth-first method to build the octree defining the grid
batches Bm. In Step 4 several conditions can of course be employed to accept Sl as a new batch. We have used two conditions
that must be satisfied simultaneously: (1) the value representing a weighted size of the batch,
#Sl �
maxr2SlfnnzðfrgÞg
maxr2PfnnzðfrgÞg ;
must be less than a given bound, CS, and (2) the absolute size of the batch, #Sl, must be less than a given (different) bound
CH . We note that the octree method has a close relation to spatial division methods used for a long time in computational
geometry, e.g for constructing a mesh for finite-element calculations [37,38].
Algorithm 2. Octree method for grid partitioning
(1) I
nitialize the active set S to contain all the points S ¼ P

(2) C
ompute the center of mass for S

(3) S
plit S into eight subsets S1; . . . ; S8 using cut-planes parallel to coordinate axes and going through the center of mass.

(4) F
or each subset Sl check if Sl is acceptable:
(a) If yes, make Sl into a batch Bm ¼ Sl.
(b) If no, go to 2 with Sl as the new active set S.
4.2.3. Grid adapted cut-plane method
The obvious drawback (from the algorithmic point of view) of the octree method is that the coordinate axes are given a

special role as the planes determining the three planes to cut the set S. Also tying the local origin to the center of mass of S
does not necessarily result in even-sized subsets Sl. Both shortcomings are relatively easy to overcome by (1) using only a
single plane to cut S but adapting the orientation of the plane to S and (2) adjusting the location of the plane so that the
resulting partitions are even-sized. The details are given in Algorithm 3. In Step 6 we use the same criteria as in the case
of the octree method. We note that the adapted cut-plane method is a variation of a method presented in the lecture notes
by Kahan [39] and closely related to ‘‘Principal Direction Divisive Partitioning” algorithm used in data mining [40].
Algorithm 3. Grid adapted cut-plane method for grid partitioning
(1)
 Initialize the active set S to contain all the points S ¼ P

(2)
 Compute the center of mass for S

(3)
 Find the direction of the cut-plane by computing the normal n of a plane P through the center of mass such thatP

r2Skr�Pk2 is maximized.

(4)
 Compute the position of the cut-plane that divides S into two even-sized sets. This is done by sorting the set of real

numbers fr � ngr2S and dividing the sorted set.

(5)
 Split S into two subsets S1; S2 using the cut-plane.

(6)
 For both subsets Sl;l ¼ 1;2, check if Sl is acceptable:
(a) If yes, make Sl into a batch Bm ¼ Sl.
(b) If no, go to 2 with Sl as the new active set S.
The complexity of Algorithm 3 is easy to compute. At each level k of the partition tree the cost is linear in the number of
points in the grid, OðNÞ, so that the total cost is OðkmaxNÞ. Since the algorithm keeps the binary tree balanced we have that
kmax � log2N and the complexity of the full algorithm is OðNlog2NÞ. Similar reasoning gives that the octree method, Algorithm
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2, has a complexity OðNlog8NÞ for optimal inputs. However, since our grid is not uniform and thus the octree is not balanced
the actual runtimes are slightly worse. In practice, grid partitioning accounts only for a negligible part of the cost of the EST
calculation.

5. Results

5.1. Top-down methods: timings and batch size

To test the different grid partitioning methods, we consider four different physical systems: fully extended polyalanine
chains, cluster cutouts of fcc Cu, periodic Au(100)-‘‘hex” surfaces [41–44], and bulk fcc Al. The basis sizes and grid param-
eters used in our calculations are shown in Table 1 and they correspond to the values given in Ref. [8].

We show the changes in timings for one self-consistency cycle, the weighted average number of non-zero basis functions
over batches, hnnzi:
Fig. 3.
differen
and (c)
hnnzi ¼
P

m#Bm � nnzðBmÞP
m#Bm
as well as the maximal number of non-zero basis functions over all the batches: nnzmax ¼maxmfnnzðBmÞg. In addition, we
show the average size of the batches, Bm and their standard deviation, r. With the octree and adapted methods, we have used
the values CS ¼ 200 for the desired weighted size of a batch, and CH ¼ 400 for the maximal size of a batch as the parameters
controlling the termination of the algorithm.

The results for the polyalanine chains are displayed in Fig. 3. It is clearly visible that the adapted cut-plane method yields
a partitioning that (1) gives the smallest average and maximal number of non-zero basis functions, (2) allows for the largest
average batch size and consequently (3) gives the best performance. The actual savings for a single self-consistency cycle for
the largest molecule are 14% and 24% when compared to the radial shells and octree methods, respectively.

The results for the octree method are notably bad for the longest polyalanine chains. This is a result of the ‘‘long and thin”
nature of the molecules. Since the octree method recursively splits each batch into eight sub-batches the shape of the ori-
ginal molecule is inherited by the batches. Consequently, some batches extend over a large portion of the molecule and lead
to a growing number of non-zero basis functions in the batch. This phenomenon is illustrated in Fig. 4 where the worst batch
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in this respect is shown in red and is clearly far from optimal shape. The problem could be solved by running a post-analysis
on the batches produced by Algorithm 2 but since the adapted cut-plane method solves the problem in a natural and efficient
way, there is no point in pursuing the matter further.

For cluster cutouts of fcc Cu, we obtain results with a similar trend except that in this case the radial shells method is
clearly the worst choice whereas the octree method is closer to the adapted method as shown in Fig. 5. Actual savings
are 33% and 11% for the largest cluster. The difference in favor of the adapted method over the octree method is explained
in the two lower panels of Fig. 5. In the middle panel it can be seen that the maximal and average number of non-zero basis
functions is almost equal for both methods but the adapted method obtains this result with considerably larger batches as
shown in the lowest panel of Fig. 5. It follows that the adapted method is able to perform the matrix multiplication in Step 1c
of Algorithm 1 with a larger matrix size, giving better overall performance. In addition, when working with packed matrix
storage for the global Hamiltonian hij, fewer batches mean that less time is consumed for sorting the locally non-zero matri-
ces hij½Bm� into the global structure (which must be done once per batch). It should also be noted from Fig. 5 that the number
of non-zero basis functions has not yet saturated, contrary to the case of the fully extended polyalanines. Consequently, the
method has not yet reached the (near) linear scaling regime for these systems.
(a) (b) (c)

Fig. 4. Polyalanine chain of 30 residues (308 atoms) and the worst batch produced by each of the batching methods (red): (a) shells, (b) octree, and (c)
adapted.
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Our third example is a periodic system: a ð5�mÞ approximant surface slab to the Au(100)-‘‘hex” surface reconstruction
[41–44] with three layers and an increasing number m of lateral rows. In periodic systems, we need to map the grid from the
periodic images to the ‘‘zeroth” supercell. This effectively breaks the original shell structure and leads to a complete failure of
the radial shells method. This is clearly visible in the top panel of Fig. 6 where the integration alone with the radial shells
method takes more time as the entire cycle using the octree or the adapted methods. The adapted method is again the win-
ner here saving 72% and 10% in calculation time for the largest surface when compared to radial shells and octree methods,
respectively.

The failure mode of the radial shells method becomes evident when we inspect the two lower panels of Fig. 6. The ex-
tremely high number of the non-zero basis functions clearly shows that the radial shell based partitioning is not the correct
approach for periodic systems. On the other hand, the two other methods show a clear saturation of the number of non-zero
basis functions, indicating good localization of the batches already from the start. Since the integration grid is distributed
rather uniformly over the supercell, the differences between octree and adapted methods are relatively small. However,
again the adapted method is able to produce the same localization effect using considerably larger batches.

The final example is a system that is periodic in all three dimensions: bulk fcc Al with an increasing number of atoms in
the supercell. The results in Fig. 7 are comparable to the Au(100) surface slab. Again the radial shells method is a failure and
the adapted method performs best. In this case the savings in the calculation time for the largest supercell are 43% and 8%
when compared to radial shells and octree methods, respectively.

For this example, we comment additionally on two more performance related questions, first the memory requirements
for the integrations and the density update, and second the setup time of the (nominally) OðN2Þ update of the density matrix,
Dij. For a three-dimensional bulk system like fcc Al, both points should be particularly critical because the density of active
basis functions (overlapping from other unit cells) in the integration volume is highest compared to other structure types
with more vacuum (surfaces, molecules, . . .). On the memory side, one limiting array is the temporary storage of the factors
Ki;r ¼ wðrÞuiðrÞ and Lj;r ¼ ðĥujÞðrÞ (see Algorithm 1) required to store the basis functions and the Hamiltonian applied to
them on each grid point of the current batch. For the fcc Al unit cells of Fig. 7, the maximum storage size is manageable
and approximately constant as a function of unit cell size, and does not exceed 350,000 entries even for 500 atoms when
using the adapted method. Likewise, the construction of the density matrix Dij for the 500 atom cell remains rather manage-
able, taking approx. 2 s out of a total of 60 s used for the density update as given in Eq. (6).
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Fig. 6. Results of different grid batching algorithms for the Au(100)-ð5�mÞ-hex surfaces: (a) timings in seconds for one self-consistency iteration of
different grid partitioning methods, full lines = entire cycle, dashed lines = integration of the Hamilton matrix, (b) maximal and average number of non-zero
basis functions per batch, nnz, and (c) average size of the batches and their standard deviation.



0

100

200

300

400

500

600

Ti
m

e 
(s

)

Shells
Octree
Adapted
Shells: Integrals
Octree: Integrals
Adapted: Integrals

0
2000
4000
6000
8000

10000
12000

nn
z

Shells: max
Octree: max
Adapted: max
Shells: avg
Octree: avg
Adapted: avg
Reference: avg

432 108 256 500
Number of atoms in supercell

0

50

100

150

200

Av
er

ag
e 

ba
tc

h 
si

ze

Shells
Octree
Adapted

Fig. 7. Results of different grid batching algorithms for the Al-fcc bulk: (a) timings in seconds for one self-consistency cycle of different grid partitioning
methods, full lines = entire cycle, dashed lines = integration of the Hamilton matrix, (b) non-zero basis functions per batch, nnz, and (c) average size of the
batches and their standard deviation.

8376 V. Havu et al. / Journal of Computational Physics 228 (2009) 8367–8379
The general trend in all cases is thus similar: The adapted cut-plane method performs best in all respects and the octree
method and the radial shells with subdivisions are worse. A remarkable failure of the method based on radial shells can be
seen in the case of the periodic systems, where the maximal number of non-zero basis functions skyrockets. This is due to
the fact that, in periodic systems, the grid operations are all performed on the supercell and thus the ‘natural’ ordering of the
radial shells is destroyed.
5.2. On the optimality of the grid partitions

Due to the complexity of the general problem of creating the grid batches we cannot determine accurately how close our
heuristic methods are to the optimal solution. However, we can get some idea on the quality of our results by comparing to
the case where the batches are taken to be only single points, i.e., when c0 ¼ c1 ¼ 1. In this case we can compare the actual
number of the evaluations of the basis functions to the number of evaluations required in the case of single-point batches. To
this end, recall that Bref

m ¼ frðlÞg and define the effectivity of the batches, e, as
e ¼
P

mnnzðBmÞ �#BmP
mnnzðBref

m Þ
: ð7Þ
The effectivities for all three different batching schemes for all four test cases are reported in Tables 2–5. As expected from
the results above, the adapted method provides best overall effectivity and the results for the radial shells method are worst
by a large factor. When comparing the values for e it should be taken into account that the average batch size is largest for
the adapted method and consequently effectivity close to one is even harder to achieve.

The last two rows of Table 4 show the improvement in e in the case of the reconstructed Au-surface when the parameters
controlling the batch sizes are halved and divided by four, i.e., when CS ¼ 100, CH ¼ 200 and CS ¼ 50, CH ¼ 100, respectively.
This aids in improving the effectivity e even further, albeit at the price of a larger overall number of batches (increasing the
overhead from per-batch operations such as sorting matrix elements into the global hij), and reducing the size of the per-
formed matrix products.



Table 2
Effectivity e of different batching schemes for the fully extended polyalanines.

Number of atoms 18 58 108 158 208 308

Radial shells 1.17 1.27 1.29 1.29 1.29 1.29
Octree 1.08 1.12 1.16 1.21 1.23 1.26
Adapted 1.08 1.11 1.11 1.11 1.11 1.12

Table 3
Effectivity e of different batching schemes for the fcc Cu-clusters.

Number of atoms 13 19 43 55 79 87

Radial shells 1.22 1.31 1.47 1.51 1.55 1.56
Octree 1.10 1.13 1.13 1.13 1.12 1.12
Adapted 1.11 1.12 1.16 1.17 1.17 1.17

Table 4
Effectivity e of different batching schemes for the Au(100)-(m � 5)-surfaces.

Number of Au rows 1 3 5 7 10 13

Radial shells 2.14 2.57 2.67 2.64 2.56 2.52
Octree 1.17 1.11 1.13 1.15 1.17 1.15
Adapted ðCS ¼ 200; CH ¼ 400Þ 1.17 1.16 1.17 1.16 1.17 1.16
Adapted ðCS ¼ 100; CH ¼ 200Þ 1.12 1.12 1.13 1.12 1.13 1.12
Adapted ðCS ¼ 50; CH ¼ 100Þ 1.09 1.09 1.09 1.09 1.09 1.09

Table 5
Effectivity e of different batching schemes for the fcc Al bulk.

Number of Al atoms in unit cell 4 32 108 256 500

Radial shells 1.96 2.18 2.15 2.03 1.93
Octree 1.11 1.13 1.16 1.13 1.15
Adapted 1.19 1.19 1.24 1.19 1.19
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5.3. How about bottom-up methods?

All the methods presented above are so called top-down methods, i.e., they start from a given set of points and recursively
divide it into smaller chunks until a desired batch size is reached. The inherent drawback of top-down methods is that the
local features of the distribution of the grid points in three-dimensional space are not accounted for in detail. This observa-
tion gives rise to another set of approaches, so called bottom-up methods, where the local environment of each of the grid
points is analyzed before creating the grid batches.

We have implemented and tested two bottom-up methods: First, a method where a Delaunay mesh with the grid points
as nodes is created and the mesh is partitioned with a multilevel graph partitioning method. This is all realized using exter-
nal established tools [45,46]. Second, a method where the batches are built by grouping nearby points together and then
recursively merging the groups until a desired batch size is reached. We denote the number of merged items per level a
grouping factor, gf.

The bottom-up methods are able to produce a set of batches that is similar to the ones produced the grid adapted method
as can be seen from Tables 6 and 7. However, they require more resources. The first method, a combined Delaunay mesh and
graph partitioning approach, uses a large amount of memory to store the mesh. The second method, the grouping algorithm,
Table 6
Performance of the bottom-up methods for a single polyalanine residue (18 atoms).

Graph part. Groups, gf ¼ 2 Groups, gf ¼ 4 Groups, gf ¼ 8

hnnzi 257.97 265.37 266.01 273.36
Effectivity 1.08 1.11 1.11 1.14
Average batch size 200.00 255.90 255.56 508.81
Std. dev. of batch size 4.93 3.37 8.65 36.25



Table 7
Performance of the bottom-up methods for a Au(100)-(1 � 5) surface.

Graph part. Groups, gf ¼ 2 Groups, gf ¼ 4 Groups, gf ¼ 8

hnnzi 796.73 834.79 845.39 902.90
Effectivity 1.17 1.22 1.24 1.32
Average batch size 199.98 255.99 255.89 509.54
Std. dev. of batch size 4.65 0.61 3.91 32.13
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needs a lot of searches to find the nearest neighbors of the groups at each level. These searches take a lot of computation time
to complete. Even for small test systems the grid partitioning using the grouping algorithm becomes by far the most time
consuming part of the electronic structure calculation, rendering the approach useless in practice.

On the other hand, the actual graph partitioning method is fast and it can accept also other graphs than Delaunay meshes
as input. The bottom-up methods can thus be developed further by building a graph by connecting nearby points and then
splitting the graph. In this case, it is important to include the local distribution of the grid points by using a graph whose
nodes can have a varying index.
6. Conclusions

The results and theoretical considerations above show how grid partitioning combined with localization of the basis func-
tions leads to linearly scaling grid-based operations, i.e., the integration and the electron density update, in EST calculations
using NAOs as the basis set. The effect of the grid partitions is most pronounced for periodic systems, but also the perfor-
mance for non-periodic cases is notably improved when the grid is properly divided into batches.

The fact that localization entails the performance of NAOs is not a surprise. However, the complexity of the actual prob-
lem of finding an optimal grid partitions is too high to be tackled in full, and heuristic methods must be employed. It is some-
what more surprising that the methods implemented and tested here exhibit such a big difference in their performance. The
best method we have obtained, the adapted cut-plane method, is rather close to the theoretical optimum for our test sys-
tems, indicating a good level of heuristic approach. The octree method suffers from the tendency to generate batches with
very few points leading to inefficiency and has the drawback of unnecessarily replicating the geometry of the system. Finally,
periodic systems present a more complicated environment due to the complex mapping of the periodic images of the grid-
points. This problem manifests itself most strikingly in the failure of the radial shell method.

In this work we have focused mainly on the top-down methods. The other approach, bottom-up methods, suffers from the
fact that it is problematic to generate a graph over the grid that accurately describes the local environment of the grid points.
In addition, however, the much simpler top-down adaptive grid method used above performs at nearly the same or better
effectivity than the formally more rigorous bottom-up methods attempted here. Apparently, this fast, well-tuned top-down
approach captures all practically needed aspects of the grid partitioning problem, leaving no incentive to pursue any more
complicated schemes.
Acknowledgment

Ville Havu acknowledges the Alexander von Humboldt (AvH) foundation for funding, and the use of the ‘‘Louhi” super-
computer of the Finnish IT center for sciences, CSC.
References

[1] P. Hohenberg, W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136 (1964) B864.
[2] W. Kohn, L. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140 (1965) A1133.
[3] F. Averill, D. Ellis, An efficient numerical multicenter basis set for molecular orbital calculations: application to FeCl4, J. Chem. Phys. 59 (1973) 6412.
[4] B. Delley, D. Ellis, Efficient and accurate expansion methods for molecules in local density models, J. Chem. Phys. 76 (1982) 1949.
[5] B. Delley, An all-electron numerical method for solving the local density functional for polyatomic molecules, J. Chem. Phys. 92 (1990) 508.
[6] K. Koepernik, H. Eschrig, Full-potential nonorthogonal local-orbital minimum-basis band-structure scheme, Phys. Rev. B 59 (1999) 1743.
[7] A. Horsfield, Efficient ab initio tight binding, Phys. Rev. B 56 (1997) 6594.
[8] V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter, M. Scheffler, Ab initio molecular simulations with numeric atom-centered orbitals,

Comput. Phys. Commun. (2009). <http://dx.doi.org/10.1016/j.cpc.2009.06.022>.
[9] O. Treutler, R. Ahlrichs, Efficient molecular numerical integration schemes, J. Chem. Phys. 102 (1995) 346.

[10] C. Fonseca Guerra, J. Snijders, G. te Velde, E. Baerends, Towards an order-n dft method, Theor. Chem. Acc. 99 (1998) 391–403.
[11] R. Stratmann, G. Scuseria, M. Frisch, Achieving linear scaling in exchange-correlation density functional quadratures, Chem. Phys. Lett. 257 (1996) 213–

223.
[12] J.M. Soler, E. Artacho, J.D. Gale, A. Garcia, J. Junquera, P. Ordejon, D. Sanchez-Portal, The siesta method for ab initio order-n materials simulation, J.

Phys.: Condens. Matter 14 (2002) 2745–2779.
[13] A. Mostofi, C.-K. Skylaris, P. Haynes, M. Payne, Total-energy calculations on a real space grid with localized functions and a plane-wave basis, Comput.

Phys. Commun. 147 (2002) 788–802.
[14] T. Ozaki, H. Kino, Efficient projector expansion for the ab initio LCAO method, Phys. Rev. B 72 (2005) 045121.
[15] D. Bowler, T. Miyazaki, M. Gillan, Recent progress in linear scaling ab initio electronic structure techniques, J. Phys.: Condens. Matter 14 (2002) 2781.

http://dx.doi.org/10.1016/j.cpc.2009.06.022


V. Havu et al. / Journal of Computational Physics 228 (2009) 8367–8379 8379
[16] C.-K. Skylaris, P.D. Haynes, A.A. Mostofi, M.C. Payne, Introducing ONETEP: Linear-scaling density functional simulations on parallel computers,
J. Chem. Phys. 122 (2005) 084119.

[17] H. Eschrig, I. Bergert, An optimized LCAO version for band structure calculations application to copper, Phys. Stat. Sol. (b) 90 (1978) 621.
[18] H. Eschrig, Optimized LCAO Method and The Electronic Structure of Extended Systems, Akademie Verlag and Springer, Berlin, 1988.
[19] O. Sankey, D. Niklewski, Ab initio multicenter tight-binding model for molecular-dynamics simulations and other applications in covalent systems,

Phys. Rev. B 40 (1989) 3979.
[20] D. Porezag, T. Frauenheim, T. Köhler, G. Seifert, R. Kaschner, Construction of tight-binding-like potentials on the basis of density-functional theory:

application to carbon, Phys. Rev. B 51 (1995) 12947.
[21] S. Kenny, A. Horsfield, H. Fujitani, Transferable atomic-type orbital basis sets for solids, Phys. Rev. B 62 (2000) 4899.
[22] J. Junquera, O. Paz, D. Sanchez-Portal, E. Artacho, Numerical atomic orbitals for linear-scaling calculations, Phys. Rev. B 64 (2001) 235111.
[23] T. Ozaki, Variationally optimized atomic orbitals for large-scale electronic structures, Phys. Rev. B 67 (2003) 155108.
[24] Y. Li, M. Wrinn, J. Newsam, M. Sears, Parallel implementation of a mesh-based density functional electronic structure code, J. Comput. Chem. 16 (1995)

226–234.
[25] J. Baker, M. Shirel, Ab initio quantum chemistry on pc-based parallel supercomputers, Parallel Comput. 26 (2000) 1011–1024.
[26] S. Goedecker, Linear scaling electronic structure methods, Rev. Mod. Phys. 71 (1999) 1085–1123.
[27] A.H. Stroud, Approximate Calculation of Multiple Integrals, Prentice-Hall, Englewood Cliffs, NJ, 1971.
[28] B. Delley, High order integration schemes on the unit sphere, J. Comput. Chem. 17 (1995) 1152.
[29] V. Lebedev, D. Laikov, A quadrature formula for the sphere of the 131st algebraic order of accuracy, Doklady Math. 59 (1999) 477–481.
[30] J. Baker, J. Andzelm, A. Scheiner, B. Delley, The effect of grid quality and weight derivatives in density functional calculations, J. Chem. Phys. 101 (1994)

8894.
[31] A. Becke, A multicenter numerical integration scheme for polyatomic molecules, J. Chem. Phys. 88 (1988) 2547–2553.
[32] J.M. Perez-Jorda, W. Yang, An algorithm for 3d numerical integration that scales linearly with the size of the molecule, Chem. Phys. Lett. 241 (1995)

469–476.
[33] W.F. Mitchell, A refinement-tree based partitioning method for dynamic load balancing with adaptively refined grids, J. Parallel Distributed Comput.

67 (2007) 417–429.
[34] G. te Velde, E. Baerends, Numerical integration for polyatomic structures, J. Comput. Phys. 99 (1992) 84–98.
[35] M. Watson, P. Salek, P. Macak, T. Helgaker, Linear-scaling formation of Kohn-Sham Hamiltonian: Application to the calculation of excitation energies

and polarizabilities of large molecular systems, J. Chem. Phys. 121 (2004) 2915.
[36] C. Gan, M. Challacombe, Linear scaling computation of the Fock matrix. VI. Data parallel computation of the exchange-correlation matrix, J. Chem.

Phys. 118 (2003) 9128.
[37] M.S. Shephard, M.K. Georges, Automatic three-dimensional mesh generation by the finite octree technique, Int. J. Numer. Methods Eng. 32 (1991) 709–

749.
[38] S.A. Vavasis, The QMG package, URL: <http://www.cs.cornell.edu/home/vavasis/qmg-home.html>.
[39] W. Kahan, Separating Clouds by a Plane, Lecture Notes, CS Division, UC Berkeley. URL: <http://www.cs.berkeley.edu/~wkahan/MathH110/

Separate.pdf>.
[40] D. Boley, Principal direction divisive partitioning, Data Mining Knowl. Discovery 2 (1998) 325–344.
[41] D. Fedak, N. Gjøstein, On the anomalous surface structures of gold, Surf. Sci. 8 (1967) 77–97.
[42] M. van Hove, R. Koestner, P. Stair, J. Biberian, L. Kesmodel, I. Bartos, G. Somorjai, The surface reconstructions of the (100) crystal faces of iridium,

platinum and gold: I. Experimental observations and possible structural models, Surf. Sci. 103 (1981) 189.
[43] G. Binnig, H. Rohrer, C. Gerber, E. Stoll, Real-space observation of the reconstruction of Au(100), Surf. Sci. 144 (1984) 321.
[44] D. Gibbs, B. Ocko, D. Zehner, S. Mochrie, Structure and phases of the Au(001) surface: In-plane structure, Phys. Rev. B 42 (1990) 7330.
[45] C. Barber, D. Dobkin, H. Huhdanpaa, The quickhull algorithm for convex hulls, ACM Trans. Math. Software 22 (1996) 469–483. <http://www.qhull.org>.
[46] G. Karypis, V. Kumar, METIS A Software Package for Partitioning Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of

Sparse Matrices, Version 4.0. URL: <http://glaros.dtc.umn.edu/gkhome/views/metis>.

http://www.cs.cornell.edu/home/vavasis/qmg-home.html
http://www.cs.berkeley.edu/~wkahan/MathH110/Separate.pdf
http://www.cs.berkeley.edu/~wkahan/MathH110/Separate.pdf
http://www.qhull.org
http://glaros.dtc.umn.edu/gkhome/views/metis

	Efficient O(N) integration for all-electron electronic structure  calculation using numeric basis functions
	Introduction
	Localization of the basis functions
	Grid operations
	Grid partitions
	General form of the problem
	Three top-down methods to partition the grid
	Radial shells and their partitions
	Octree partitions of the grid
	Grid adapted cut-plane method


	Results
	Top-down methods: timings and batch size
	On the optimality of the grid partitions
	How about bottom-up methods?

	Conclusions
	Acknowledgment
	References


